
1

May 2009

Kepler Project
Newsletter

Web Accessibilty For Kepler
People thinking about adopting Kepler often ask the
question, “Can Kepler be used over the web?” The easy
answer is “Yes”, but a more helpful response might be,
“Yes, and in many different ways.” A number of projects
have used Kepler in a web-based computing environ-
ment and others plan to do so. But the differences in
the requirements these projects face are as numerous
as the similarities, with solutions necessarily spanning a
range of deployment scenarios. At one extreme, Kepler
can be used as the backend for a web-based application
that--from the users’ point of view--looks and behaves
nothing like Kepler. Kepler is used by the scientists
and engineers developing, deploying, and supporting
the workflow behind the web application, while the
end-user is (or can be) completely unaware of the role of
Kepler. The GEON project, among others, has suc-
cessfully employed Kepler in this way from the earliest
days of the Kepler Project.

At the other extreme, the full power and key features
of the standard Kepler graphical user interface can be

mimicked in a web browser, thus enabling users to
compose, run, and share workflows without installing
and configuring Kepler on their own computers. Com-
putational and data management resources can be pro-
vided to users of such web-enabled installations of Ke-
pler with the added benefit that users can connect and
disconnect from running instances of Kepler workflow
from wherever they may be. This is the vision of Chris-
topher Tuot’s group at the German Research Center
for Artificial Intelligence for the KFlex system, and of
Paul Allen’s group at Cornell who are extending and
customizing Kflex to support the SciencePipes project.
KFlex and SciencePipes are discussed further below.

Between these two extremes are web portals that en-
able Kepler workflows to be uploaded to a server, se-
lected by the same or different users, and configured
and executed over the web.

The Kepler Web Service
Deploying Kepler as the computational backend to
a custom web application is now easier than ever.
Jianwu Wang, a member of the Kepler/CORE
enginering team, recently developed support for

executing Kepler workflows via stan-
dard Web service protocols. The Kepler
Web Service supports SOAP-based
and RESTful invocations, and both
synchronous and asynchronous opera-
tion. The Web service captures and re-
turns output from display actors that
normally would appear within the Ke-
pler GUI at run time. The Kepler Web
Service already has been used success-
fully to decouple back-end execution of
workflows from custom browser-based
user interfaces. Code and documenta-
tion for the Kepler Web Service may be
found at https://code.kepler-project.
org/code/kepler/trunk/modules/web-
service/.

The KFlex web interface to Kepler

May 2009

https://code.kepler-project.org/code/kepler/trunk/modules/webservice/
https://code.kepler-project.org/code/kepler/trunk/modules/webservice/
https://code.kepler-project.org/code/kepler/trunk/modules/webservice/

2

Web Accessiblity (continued from p. 1)

Hydrant
The remainder of this article focuses on deployments
of Kepler via web-browser interfaces that emulate at
least some of the look and functionality of the standard
Kepler user interface. In May 2008, Tristan King at
James Cook University announced Hydrant, a system
for enabling users to view, run, and share their Kepler
workflows--and results--via the web. The stated goal of
Hydrant was to make Kepler extremely easy to use for
those who want to run existing workflows rather than
develop new ones. Hydrant’s approach depends on
some users building and testing new workflows who
then upload these workflows to the Hydrant portal.
Hydrant allows others to view these workflows; select,
configure and run the workflows; and view the outputs
of these runs via the web. The system allows the work-
flow repository to be searched and makes it easy for us-
ers to share their workflows. A key feature of Hydrant
is its ability to automatically substitute web-enabled
versions of actors for those that would otherwise cre-
ate graphical displays on a local workstation. Hydrant
project information and source code can be found at
http://www.hpc.jcu.edu.au/projects/kepler/wiki/Hy-
drant.

KFlex
The KFlex system takes Hydrant’s approach one step
further by enabling users to compose new workflows
and customize existing workflows via the web. The
open-source KFlex system consists of two components.
KFlex Server is an extended version of the Kepler 1.0
release that provides a Web Service interface for exe-
cuting workflows and is packaged as a web application
deployable to standard web application servers such as
Tomcat. The KFlex Client is an Adobe Flex 3 imple-
mentation of the Kepler GUI that reproduces the criti-
cal features of the standard Kepler user interface and

uses a KFlex server for workflow execution, data stor-
age, and collaboration. Christopher Tuot’s group at
the German Research Center for Artificial Intelligence
(http://www.dfki.de) is developing KFlex to serve as
the interactive front end to a Spatial Decision Sup-
port System (SDSS) that will include a geographical
database and a library of models for forecasting the out-
comes of various decisions.

SciencePipes
Web access to Kepler supports educational as well as
scientific purposes. The SciencePipes web application
(http://sciencepipes.org), currently under development
by Paul Allen at the Cornell Lab of Ornithology, is
meant to enable students, educators, citizens, resource
managers, as well as scientists to create and share analy-
ses and visualizations of biodiversity data. SciencePipes
builds on the KFlex framework to enable members of
the public to create their own workflows from scratch
using high-level actors developed specifically for biodi-
versity analysis. Workflows employing these domain-
specific actors are comprehensible to students and non-
professionals. SciencePipes makes Kepler accessible to
non-scientists, and promotes sharing and discovery of
workflows. Because workflows can be copied and used
as starting points for new analyses, SciencePipes sup-
ports learning by example. Moreover, SciencePipes
makes it easy to export the results of workflow runs as
web resources that can be incorporated into web sites
(e.g. blogs) and automatically updated as workflows
are rerun with new data or parameters are changed.

Interested in trying out Kepler on the web either as a
user or as a prospective developer of new web-based
scientific workflow applications? Create your own
workflows on SciencePipes or interact with other Ke-
pler developers via the Kepler Web Interface Interest
Group and online forums (https://kepler-project.org/
developers/interest-groups/webui).

Recent and Upcoming Events

April 16, 2009 The Eighth Biennial Ptolemy Miniconference was held Thursday, April 16, 2009 at the
University of California, Berkeley. Talks and posters described the latest research based on the Ptolemy II
system and included a number of contributions from the Kepler community. For the program and links
to presentations see http://ptolemy.berkeley.edu/conferences/09/program.htm.

July 20-21, 2009 “Using Kepler for Conservation Training,” Kruger National Park, South Africa. For
more information please contact Matthew Jones (jones@nceas.ucsb.edu).

http://www.hpc.jcu.edu.au/projects/kepler/wiki/Hydrant
http://www.hpc.jcu.edu.au/projects/kepler/wiki/Hydrant
http://www.dfki.de
http://sciencepipes.org
https://kepler-project.org/developers/interest-groups/webui
https://kepler-project.org/developers/interest-groups/webui
http://ptolemy.berkeley.edu/conferences/09/program.htm

3

Although the build system now works with modules
stored and versioned anywhere, we encourage projects
to store their extensions in the Kepler svn repository
(https://code.kepler-project.org/code/kepler/). Each
Kepler extension can be tagged and branched indepen-
dently of the Kepler kernel, allowing extension devel-
opers to maintain (and fix bugs) in distinct versions of
their extensions meant to run on different versions of
Kepler.

Support for Experimental Overrides
The revised build system also provides advanced fea-
tures that enable developers to experiment with al-
ternative implementations of classes included in the
Kepler kernel without creating a complete branch of
the kernel or exposing other developers to such major
changes. Much development in the Kepler commu-
nity centers around not simply developing new actors
and workflows for Kepler but significantly enhancing
the workflow system itself or customizing the user in-
terface for specific communities. Many projects are
funded to enhance Kepler in such major ways. So be-
sides allowing modules to be developed against specific
versions or releases of Kepler, the build system allows
extensions to experimentally override classes in the Ke-
pler release it is meant to work with. The system au-
tomatically orders the class path at run time to respect
the module priority order defined in a simple text file
named modules.txt. When more than one module de-
fines the same class, the version of the class included in
the module listed earlier in modules.txt takes priority at
run time. This approach applies the familiar Java class-
path approach to Kepler modules, and makes it easy
for projects to develop new major features and provide
new options in the graphical user interface. Once the
usefulness of a new feature has been demonstrated, the
Kepler Framework Infrastructure Team (see Kepler
Organization Update on page 4 of this newslet-
ter) can work with the contributor either to incorporate
these changes into the Kepler kernel itself or to add
new extension points for supporting optional features
demonstrated by the overrides, such that the overrides
are no longer necessary.

Resolution of Jar Version Conflicts
Similarly, extensions can employ versions of third-party
libraries (i.e., jars) that are different from those used
in the Kepler kernel or in other extensions. The build
system allows a module optionally to be configured to
run in its own Java class loader. A module running in

Build System Facilitates
extension of Kepler
A defining characteristic of the Kepler effort has been
the large number of projects extending Kepler for their
own needs and applying the system to a broad range of
scientific domains. Making it easier to develop, share,
and smoothly integrate such independently developed
extensions to Kepler is a major objective of the Kepler/
CORE project. Additionally, participants at the first
Kepler Stakeholders Meeting requested that the exist-
ing Kepler code base be modularized and that devel-
opment of the kernel of code used by all Kepler users
be decoupled from development of specific extensions
developed by and for particular communities. The Ke-
pler/CORE team has developed a revised build system
to address these needs.

Framework for System Modularity
The build system now is based on the notions of mod-
ules and suites. A suite is a set of modules meant to be
used together. The Kepler base system (the essential
core of Kepler) is represented by such a suite of mod-
ules, and any number of system extensions can be de-
veloped as optional, add-on suites. Modules are rep-
resented both in the source code repository and in the
Kepler run time system, and the build system decouples
building and release of different suites. Developers can
select which modules should be included in their devel-
opment environment, and users ultimately will be able
to select which suites are present and active in an instal-
lation of Kepler.

The system also allows developers to select which ver-
sion of the Kepler kernel is to be used when building and
testing extensions. This enables developers to package
and distribute their suites independently of the Kepler
kernel. At the moment, developers can build their code
either against the version of Kepler currently under ac-
tive development (the “trunk” of the Kepler source code
repository), or against the 1.0 release of Kepler. The lat-
ter option allows projects to develop and release suites
that are meant to work with instances of Kepler already
installed and in use. In the past, projects developing
code based on the Kepler beta releases, or on the 1.0
release, sometimes found it easier to store their code in
other repositories. The result was that it was challeng-
ing for such projects to share code with the rest of the
community and stay informed about parallel efforts.

https://code.kepler-project.org/code/kepler/

4

Kepler Organization Update
As a multi-institutional effort, the Kepler Project faces
numerous challenges in enabling collaboration between
the various stakeholders and coordinating contribu-
tions to the system. The Kepler/CORE team recently
announced new organizational and technological infra-
structure to support these efforts.

A new Leadership Team, approved by the Kepler
project members, has committed to assuring the long-
term technical and financial viability of Kepler, making
strategic decisions on behalf of the Kepler user commu-
nity, and representing the interests of the Kepler Proj-
ect. The Leadership Team aims to guide and facilitate
the overall design and development of Kepler through
member participation as discussed below. Leadership
Team members will serve for terms of 3 years, with
renewal for additional terms upon approval of the re-
mainder of the Leadership. The Kepler Leadership
Team and others carrying out research and develop-
ment within the context of Kepler interact via Inter-
est Groups, Development Teams, and Infrastructure
Teams. Each of these groups is granted it’s own space
for web pages and forums for discussion on the Kepler
web site.

Interest Groups represent a lightweight mecha-
nism for community members to discuss areas of com-
mon interest, and are easy to form. Development
Teams design, develop, test, and deploy the software
and infrastructure necessary for a specific system exten-
sion or actor package for Kepler. Each development
Team operates under a charter that describes its scope,
and a roadmap that identifies its work plan and planned
products. Individuals who wish to create a team can re-
quest a project space in the Incubation areas of the Ke-
pler web site to assist in the construction and submis-
sion of these documents. Finally, Infrastructure
Teams sustain the development of the kernel of Ke-
pler on which all other subsystems are built, maintain
the build and test tools used by the Kepler community,
and oversee the process of releasing new distributions
of the Kepler base system.

The entire Kepler community is invited to participate
in the development of Kepler at each of these levels!

Build System (continued from p. 3)

its own class loader can employ versions of 3rd-party
jars differing from those used by the Kepler kernel.
Each module-specific class loader loads only those jars
unique to the module or differing in version from those
in the main class loader such that jars are not loaded
redundantly and so that all modules can continue to in-
teract in the normal Java fashion, except with respect to
the classes loaded from alternative versions of the same
jars.

Getting Started with the Build System
Finally, the build system now makes it easier for new
developers to get started with Kepler and to set up their
development environments quickly. It automatically
checks out appropriate versions of the Kepler kernel,
Ptolemy, and modules based on the suites one wants to
work with. It also organizes these files in a uniform way
automatically on the developer’s machine. Finally, the
build system prepares project files for three IDEs (In-
telliJ, Eclipse, and NetBeans) in addition to support-
ing full operation from the command line.

To check out and build the modules included in the
kepler base system suite, try the following commands
at the command prompt on a MacOSX, Windows, or
Linux computer with svn and ant installed:
% mkdir kepler
% cd kepler
% svn co https://code.kepler-project.org/code/
 kepler/trunk/modules/build-area
% cd build-area
% ant change-to -Dsuite=kepler
% ant run

Alternatively, use these commands to check out at once
all of the modules under development at the trunk and
to build kepler:
% svn co https://code.kepler-project.org/code/
 kepler/trunk/kepler
% cd kepler/modules/build-area
% ant run

For more information about how you can use the re-
vised build system to develop your extensions to Kepler
and easily share them with other developers via the Ke-
pler repository, please see the complete build system
instructions at https://kepler-project.org/developers/
teams/build/documentation/build-system-instructions.

 Kepler is based upon work supported by the National Science Foundation under award 0722079
for Kepler/CORE, and by many contributing projects and individual contributors

https://kepler-project.org/developers/teams/build/documentation/build-system-instructions
https://kepler-project.org/developers/teams/build/documentation/build-system-instructions

