
Development of Kepler/CORE – A Comprehensive, Open, Reliable,
and Extensible Scientific Workflow Infrastructure

Summary

The Kepler scientific workflow system is the product of a grass-roots collaboration of research
projects primarily funded by NSF and DOE to apply workflow automation to a broad range of
scientific disciplines. Kepler’s strengths relative to other workflow systems and its promise for
catalyzing future research projects derive from this multidisciplinary origin. However, prior to
the Kepler/CORE effort described here, no project had been funded specifically to coordinate
development of Kepler with the goal of making it a well-engineered software product with the system
functions and attributes required for broad adoption and long-term sustainability. Kepler/CORE,
in contrast, is funded to take responsibility for developing and maintaining those features of the
system that are needed by all scientific domains and across the various projects, while at the same
time increasing the role of the current and future user community in specifying requirements and
priorities.

The Kepler/CORE project aims to reengineer and significantly enhance Kepler as follows. To
better serve current and envisioned user communities, the system must be independently extensible
by groups not directly collaborating with the team that develops and maintains the core capabilities
of Kepler. Facilitating extension in turn requires that the Kepler architecture be open and that the
mechanisms and interfaces provided for developing extensions be well designed and clearly articu-
lated. For Kepler to serve as a viable starting point for developing workflow-oriented applications,
and as middleware for developing user-oriented scientific applications, Kepler must be reliable both
as a development platform and as a run-time environment for the user. Finally, to fulfill the greater
promise of accelerating scientific discovery, Kepler must represent a comprehensive system with
first-class support for managing data passing through and between workflow runs, decoupling work-
flow definitions from the specific technologies used to provide run-time services, and for providing
a rich environment to manage data, workflows, and results in the context of specific projects.

Key to our development plans will be the active participation of the greater scientific community.
Kepler/CORE team members will meet periodically with a council of current Kepler stakeholders,
representing communities already committed to applying Kepler to specific research domains, as
well as with potential future users in additional scientific domains, to gather requirements, ascertain
relative priorities of needed features, and coordinate contributions by members of the greater Kepler
collaboration. The Kepler stakeholders council also will evaluate potential business models for
sustaining development and maintenance of the Kepler system beyond the funding period of this
proposal.

The Kepler scientific workflow system is already used in a large number of diverse projects.
We expect that our collaborative, open-source efforts will greatly enhance each of these projects
by providing a reliable, core set of functionality, and enable individual projects to focus on and
disseminate those additional capabilities needed for the particular domains and research questions
they address.

1 Introduction

Despite enormous advances in information technology, the state-of-the-art in scientific data analysis
and management is often rather bleak. Scientists use a variety of mostly isolated tools including
specialized, standalone desktop applications and web-based programs. Data management is usually
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done in an ad hoc and piecemeal fashion using a mix of spreadsheets, text files, and relational
databases. Data transfer between different applications is often done manually by the user via the
notoriously error-prone and non-reproducible “copy-and-paste method.” Use of plain text files and
paper- or file-based lab noteboks is still widespread. For data-intensive and/or computationally-
intensive scientific applications, “expert users” (a.k.a. programmers, typically non-scientists) are
employed to develop one-off, custom solutions such as specialized Perl or Python scripts. While
addressing to some extent the need for automation, such scripts: (i) are too low-level to be “aware”
of the scientific processes, data, and metadata they operate on; (ii) are hard to comprehend, extend,
share, document, and maintain in a collaborative setting; and (iii) produce analysis results whose
provenance is hard if not impossible to track with the result that “debugging” automated processes
and interpreting unexpected results is an unnecessarily difficult task.

Cyberinfrastructure developments in general, and scientific workflow systems [3, 13, 28, 33, 30,
11, 22, 32, 15] in particular, address many of the issues mentioned above, and aim to increase both
the scientist’s and the developer’s effectiveness and efficiency in their respective roles. Scientific
workflow systems allow the scientist to harness underlying cyberinfrastructure (e.g., Grid middle-
ware, metadata catalogs, and data federations) by defining a high-level, comprehensible, shareable,
and executable model of a scientific process. Features envisioned for scientific workflow systems
generally include: (i) means to discover, access, and organize data; (ii) high-level descriptions of
analyses and data flows; and (iii) end-to-end support for scientific computing and data manage-
ment. The latter includes capabilities to deal with different service and computing environments,
integrated management of workflows and workflow products (datasets, databases), and provenance
management.1

A scientific workflow ties together various software components that often have been developed
independently and that may be deployed and invoked in different ways, e.g., as a web service, as a
local application that can be invoked from the command line, or—as in the case of database systems
or other complex software packages such as R and Matlab—via custom APIs. A scientific workflow
system should provide a uniform abstraction and invocation mechanism for all such components.
For example, in Kepler [19], so-called actors are used as the uniform software components and
principal building blocks of a scientific workflow. For a scientific workflow system to be most
effective and useful to one or more communities, users should be able to readily share and reuse
data, workflows, workflow results and their provenance, and—last but not least–workflow system
extensions themselves (e.g., new actors).

1.1 The current Kepler collaboration and system

The Kepler scientific workflow system [19, 4, 21] is a general purpose, multi-disciplinary, and open-
source2 computing environment for modeling, executing, and managing scientific processes and
resources. Figure 1 gives two example workflows, one for infering phylogenetic trees and another
for species prediction, implemented within Kepler. The Kepler system grew out of an informal col-
laboration between researchers and developers funded under the NSF/SEEK [26] and DOE/SDM
[1] projects. Both projects required scientific workflow automation techniques, albeit for rather
different application domains (including ecoinformatics, bioinformatics, and astrophysics). This in-
formal collaboration chose to build Kepler upon the well-documented and open-source Ptolemy II

1Data and workflow provenance capture the processing history and evolution of data products and workflow
descriptions, respectively. Data provenance is crucial for understanding and, if necessary, re-running, single-stepping,
or otherwise “debugging” analysis results; workflow provenance is an important part of overall workflow life-cycle
management.

2Kepler is distributed under the BSD open-source license.
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Figure 1: Two example Kepler workflows: (left) a top-level view of a bioinformatics workflow
for inferring phylogenetic trees from molecular sequence data; and (right) a top-level view of an
ecology workflow for running a Garp-based ecological niche model. Many of the actors shown are
composites, i.e., containing sub-workflows.

system [2, 12]. Originally developed as a heterogeneous modeling and design environment for the
electrical engineering community, Ptolemy II offers many advantages such as a powerful graphical
user-interface and support for different workflow execution models (e.g., process networks [18, 20] for
stream-based pipelined execution, nested subworkflows, and models for discrete event and continu-
ous time simulations [16]). The GUI employed by Ptolemy II (and since extended by Kepler) offers
a number of benefits over commercial scientific workflow systems (such as SciTegic’s Pipeline Pilot)
that are more narrowly focussed on a particular domain, and the powerful and flexible execution
models go beyond the simple DAG-based workflows often used in Grid-workflow applications. With
the rapid success in building workflows based on Ptolemy ii extensions, developers and researchers
from other projects (GEON [25], ROADNet [27], etc.) soon joined the informal collaboration in
creating the current Kepler system.

1.2 The need for a coordinated engineering effort

Previous and ongoing projects contributing to Kepler have been successful in developing various
Kepler extensions, e.g., for provenance tracking, distributed process execution, ontology-based dis-
covery and integration, and new workflow design methods, as required by the needs of each project.
However, because of the informal nature of the Kepler collaboration, there has been no coordinated
effort to define a single, unified architecture and vision for the Kepler system, i.e., with a clearly de-
fined kernel of capabilities applicable to all projects; well-defined extension points with support for
backwards compatibility; system stability ensured by rigorous software testing; and an engineering
approach capable of delivering and supporting regular software releases. Quoting one of the many
PIs and Kepler supporters who have adopted the system for their projects [31]:

I believe the power of Kepler is that it was developed to serve a wide variety of applications
simultaneously and therefore has emerged as a generic component of the nation’s emerging cy-
berinfrastructure. However, Kepler’s very success has created a problem in that with so many
projects adopting Kepler and creating local improvements, there needs to be a second generation
effort to create a robust and extensible software infrastructure that can continue to support the
growing number of e-Science adopters.

This project aims to fill this gap in the overall Kepler effort. In collaboration with current and
future contributors to Kepler we plan to build upon the products of the efforts described above; to
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take responsibility for the essential, interdisciplinary software components of Kepler; and to facilitate
further Kepler development by standardizing interfaces for implementing system extensions (e.g., for
data and metadata management, provenance tracking, and project-specific deployment scenarios).
Specifically, we propose to improve and enhance the Kepler scientific workflow system to yield
Kepler/CORE, a comprehensive, open, reliable, and extensible scientific workflow infrastructure
suitable for serving a wide variety of scientific communities. Our Kepler/CORE team, which includes
the leads and technical drivers for Kepler research and development in several large and medium
scale projects, proposes to take responsibility for developing and maintaining those features of the
system that are needed by all scientific domains, while at the same time increasing the role of the
current and future user community in specifying requirements and priorities.

2 Development Plan

The long-term success of Kepler as a multidisciplinary, scientific computing platform depends criti-
cally on widespread contribution to the effort. It is far too difficult for a single development team to
provide all of the capabilities required to satisfy the needs of all potential users. Specific communities
frequently require disparate capabilities that depend on numerous, domain-specific methodologies,
applications, and data formats. Furthermore, the requirements of different disciplines often conflict
even for fundamental aspects of the system, including how data should be managed, how the system
should be deployed and configured, and what level of information-technology competence should be
expected of users. Widespread, multidisciplinary adoption thus requires that members of specific
communities contribute specialized actors and system extensions suitable to their own communities.

For these reasons, the goal of Kepler/CORE is not to address the specific requirements of one or
more specialized communities, but to: (i) enable multiple groups in a number of distinct disciplines
to easily create, support, and make available domain-specific Kepler extensions; (ii) better support
those crucial features that are needed by all disciplines; and (iii) provide for the wide range of
deployment scenarios required by different disciplines and distinct research settings. Our strategy
will be to make the significant architectural, design, and functional improvements required to make
Kepler a comprehensive, open, reliable, and extensible (CORE) scientific workflow infrastructure.
These key Kepler/CORE system attributes are described further in the following subsection.

2.1 Kepler/CORE system attributes

Independently Extensible. Current contributors to Kepler are funded by a number of distinct
development and research projects. These developers contribute new features and actors needed
for their respective projects to a single source-code repository shared by all projects employing
Kepler. Developers currently work together closely to ensure basic interoperability of contributions
and stability of the Kepler system. Even so, the resulting contributions are typically ad hoc (e.g.,
for the purpose of addressing a specific need of the corresponding project), and do not necessarily
follow uniform conventions for managing data, dealing with external services, or configuring work-
flows. The result is a system that is monolithic in the sense that it is built and deployed as a
single product, but discordant in that there is no guarantee that all contributions interoperate in
a semantically meaningful way. Rather than enforcing conventions that might slow progress in the
various disciplines contributing to Kepler, we propose to further enable independent extensibility
of Kepler while making it easy to package domain-specific contributions in a way that ensures both
the stability of the overall system and clearly indicates what components are expected to work well
together. More specifically, we plan to divide Kepler into a minimal set of mandatory functional
components (the Kepler kernel); a set of extensions representing optional non-actor functionality

4



and communicating with the kernel via well-defined and generic extension interfaces; and a number
of actor packages for distinct disciplines (see Figure 2). This approach will enable other develop-
ment teams to freely develop new extensions and actor packages as needed without endangering the
stability of the kernel, and even to replace standard extensions as needed.

Reliable. System reliability is essential to the success and widespread adoption of Kepler. Ke-
pler/CORE must be reliable both from the point of view of developers and users. For developers,
point Kepler must be a reliable development platform. In particular, effective extensibility requires
that the system being extended not change in ways that break previously developed extensions.
Consequently, developers of new Kepler extensions and actors must be able to rely on features to
remain stable over time, and new releases of Kepler/CORE should not require significant refactor-
ing of extensions maintained by other groups. Our proposed approach of splitting Kepler into a
minimal kernel and a set of standard extensions and actor packages will enable us to achieve this
stability.

Kepler also must be reliable for end-users, i.e., stable and robust to common faults at run time.
This run-time reliability is particularly important when Kepler is used not simply as a desktop
research application, but also as middleware that other domain-specific applications can be built
upon. Reliability for developers and users alike will ensure that Kepler can be applied confidently
as dependable cyberinfrastructure.

Open Architecture, Open Project. We propose an open system architecture and an equally
open project management approach. First, the various kernel interfaces required to achieve suffi-
cient extensibility must be clear to engineers extending Kepler, and a consistent, uniform design
across the entire product will be essential to facilitating this understanding. We will take respon-
sibility as a group for coordinating the design of the overall Kepler/CORE product architecture,
providing uniform extension interfaces and APIs to make the system easy to understand and extend,
and clearly documenting the nature and applicability of the kernel extension points. Second, the
Kepler/CORE project will be open in its interaction with the user community. We will disseminate
plans, designs, and system documentation as we develop them and provide mechanisms for sug-
gestions and feedback throughout the course of the project. We will also actively engage the user
community and gather requirements, advice, and feedback on priorities, both from those already
committed to using Kepler (i.e., the Kepler “stakeholders”), and from scientists who could benefit
from scientific workflows but who are not currently using workflow automation technology.

Comprehensive (End-to-End) System. Scientific workflow systems will be broadly adopted
only when they become sufficiently comprehensive in scope. This project proposes to widen the
scope of Kepler not only through independent extensions as decribed above, but also by providing
new, fundamental enhancements that will benefit all user communities. The general requirements
for these enhancements are discussed in the following subsection.

2.2 Requirements for end-to-end scientific workflow support

Scientific workflow systems promise to accelerate research by providing scientists and developers
with generic capabilities that either are currently difficult to perform using existing tools (such as
automated provenance tracking and workflow distribution and optimization), or must be imple-
mented repeatedly in each workflow (such as data access, format conversion, and remote service
invocation). Kepler/CORE will help deliver on the promise of scientific workflow automation by
enhancing Kepler with generic capabilities for data, service, and workflow management. Many of
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the tasks related to these three areas are partially supported in Kepler today, often via special-
purpose actors developed for particular disciplines. Other functions currently must be performed
entirely outside of the Kepler system or are impossible to carry out. The significance of the general
capabilities planned for Kepler/CORE are described in the remainder of this subsection, and the
specific enhancements we will deliver are described in the following subsection.

Data Management. While Kepler currently facilitates the flow of data between actors in a
workflow, many other important data management tasks are not handled transparently by the
workflow execution framework. Rather, these data management tasks typically are supported via
special-purpose actors, e.g., to control and manage the flow of data into and out of workflows,
to compare and visualize data and metadata, to handle data format conversions, and to manage
data references (e.g., for resolving Life Science identifiers (LSIDs) [29]). When explicit actors
are used to carry out these tasks, the workflow framework becomes ignorant of these operations,
thus limiting the ability of the system to automate, optimize, and flexibly execute these tasks. For
example, when specialized actors are used to import and export data, it becomes difficult for Kepler
to automatically determine what data was used and what results were computed by a particular
workflow run. Dependable access to such knowledge represents a critical requirement for a generic
provenance subsystem [8, 9]. Furthermore, using special-purpose, technology-dependent actors for
data management limits Kepler’s ability to automatically leverage alternative data sources (e.g.,
having different formats or using different storage technologies) in different contexts (e.g., when
the workflow is shared between organizations). While a number of more generic data management
approaches have been prototyped within Kepler, including collection-oriented modeling and design
[24, 23] integrated data access via EcoGrid [17], and semantic data mediation [6, 10, 5], a uniform
and comprehensive data management framework does not yet exist. Due to the data-driven nature of
scientific analyses, supporting data management tasks in a generic way within the Kepler framework
is crucial for wide-scale adoption.

External Service Management. Scientific workflow systems promise to make scientific com-
puting specifications more declarative by separating the definition of what computations to carry
out (the workflow definition) from how to carry each out (handled automatically by the framework).
Declarative workflows in turn promise to be easier to understand (e.g., because all actors represent
scientifically meaningful tasks rather than obscure data manipulation or control-flow operations)
and to reuse (e.g., because workflows do not require changes when different underlying technologies
or implementations of algorithms need to be applied). Workflows also make it easier to effectively
use services and resources external to the automation framework. However, Kepler workflows that
make extensive use of external services generally use actor-oriented approaches for managing and
accessing these services similar to the approaches used for managing data. Various special-purpose
actors are used for moving data and for running jobs on remote servers [7]. Kepler/CORE enhance-
ments will better enable the system to carry out computations on the optimal set of computing
resources at run time, based on resource availability and preferences; and will make it easier for
users to share and redeploy workflows in different environments.

Workflow Management. Workflow management encompasses tasks related to designing, stor-
ing, and validating individual workflows; organizing workflows, data, and results within the context
of a particular project or research study; and capturing and querying the provenance of workflows
and data. While current systems, including Kepler, typically support these tasks to varying degrees,
they generally lack comprehensive workflow-management support and focus primarily on compos-
ing, and/or running a single workflow at a time. Kepler is largely ignorant of the scientific context
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Figure 2: Proposed high-level changes to the Kepler architecture (left), and idealized roles of scien-
tists, system engineers, and interaction with Kepler (right)

in which workflows are being run, the flow of data through and across successive workflows (as
is common in scientific research), and the origin of workflows [9]. Kepler/CORE deliverables will
provide comprehensive support for end-to-end workflow management.

2.3 Kepler/CORE capabilities and deliverables

Our strategy for enhancing Kepler according to the requirements described above is to:

• Identify within the current Kepler system the minimal kernel of essential functional subsys-
tems.

• Design extension points for enhancing the Kepler kernel and customizing it for use in particular
research settings.

• Refactor the existing system into kernel subsystems and non-kernel components that interact
with the kernel through these extension interfaces.

• Develop new components to address current limitations in data, service, and workflow man-
agement.

Figure 2 illustrates our strategy from the point of view of a research group adopting Kepler. The
blue boxes indicate system components developed by the Kepler/CORE team, while the remaining
boxes represent software independently developed by non-Kepler/CORE developers, either in-house
(local actors and extensions) or other groups (3rd-party extensions and actors). The Kepler ker-
nel comprises those features that cannot be replaced or overridden by extensions, while standard
extensions and actors represent replaceable components provided by the Kepler/CORE team.

Design of this new Kepler architecture will be driven by the need to support current features and
new capabilities required to make Kepler a more comprehensive scientific workflow environment.
These new capabilities will provide support for: (1) configuring and managing Kepler installations;
(2) managing project information and providing context for workflow execution; (3) decoupling the
graphical user interface from workflow execution; (4) transparently storing and accessing scientific
data using a variety of underlying technologies; (5) distributing workflow execution in a technology
independent manner; (6) interoperating with authentication and authorization services; and (7)
inserting custom services into the workflow enactment sequence. Each of these capabilities likely
will be associated with one or more distinct extension points in the kernel. Design and prioritization
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of these new capabilities will be guided by requirements gathered from current Kepler stakeholders
and from representatives of the broader scientific community. We describe these new capabilities in
more detail below along with our current vision for delivering them.

Flexible configuration management. Independent extensibility requires flexible tools for de-
ploying and configuring Kepler in a research setting. The current Kepler installer treats all included
software components as mandatory. Run-time configuration information is stored in text files that
must be hand-edited for non-standard installations. Possible Deliverables: A configuration man-
agement system to support: downloading, installing, and upgrading the Kepler kernel; discovering
and installing standard and 3rd-party extensions and actor packages; specifying and configuring
extensions to be employed during execution; and a standard configuration store for a single-user,
single-machine installation of Kepler. Third-parties will be free to develop alternative configuration
stores with additional capabilities, e.g., for configuring Kepler across multiple machines and users
in an organization.

Project information management. Users commonly employ Kepler in several different con-
texts or distinct research projects. Users require the ability to organize and access actors, workflows,
data, and results within specific projects, and to assign computing resources (and associated authen-
tication credentials) to each. Possible Deliverables: A project information store for persisting project
definitions and associations between data and workflows within a project. The Kepler kernel will
operate on data associated with the current context, and record within that context new associations
between workflow results and the workflow definitions and input data used to derive them (i.e., the
provenance of the results). The standard project store will be appropriate for single-user operation,
but other groups will be free to develop alternative project stores and associated management tools
for sharing project information between users in an organization.

Graphical interface decoupled from the workflow engine. Different user communities and
deployment scenarios often require distinct user interfaces. Furthermore, effectively exploiting dis-
tributed computing resources requires that the Kepler graphical user interface not be tightly coupled
to workflow execution. Long-running workflows in particular require that users be able to detach the
GUI from a workflow once it is running, and reattach to a running workflow later to monitor or steer
further execution. While Kepler workflows currently may in principle be run without displaying the
GUI, the Kepler workflow execution engine and graphical user interface are tightly coupled, and
there is no convenient way for different user interfaces to interact with a running workflow. Possible
Deliverables: A standalone Kepler GUI that can start new workflow engines or connect to a running
engine either locally or on a remote machine. Other groups will be able to develop completely new
graphical user interfaces to Kepler, including domain-specific applications and web-based portals.

Extensible workflow enactment sequence. Kepler is a powerful environment for exploring
radical new approaches to modeling and automating scientific research processes. Reengineering
must not put this type of research at risk. We plan to mitigate this risk and enable the development
of powerful new features by making it easy to change or add to the sequence of steps involved in
workflow enactment. Possible Deliverables: A generic framework for specifying the abstract stages
of workflow enactment and the concrete services to invoke for each stage. Abstract stages might
include loading of abstract workflow definitions; refinement of these workflow templates to con-
crete workflows; validation of workflows, parameter values, and types; workflow optimization; pre-
execution checks, e.g., to verify that required services are available; reservation of resources; binding

8



of workflows to data sources and sinks; staging of data, actors, and subworkflows to compute nodes;
execution of the workflow itself; steering of workflow execution; modifying workflows dynamically or
binding to new resources as needed for fault tolerance; and storing results and releasing resources
after workflow run completion.

Technology-independent data management. Maximizing the reusability of a scientific work-
flow requires that the definition of what the workflow does be decoupled from the particular tech-
nologies used to manage data between workflow runs, and from the binding of the workflow engine
to particular data sets it operates on during a particular run. Currently much interaction with ex-
ternal data stores is modeled explicitly as actors, thus requiring extensive refactoring of workflows
used in new deployment contexts and making it difficult to implement comprehensive data prove-
nance features. Possible Deliverables: General-purpose data source and data sink components that
will be loosely coupled to the technology used to store data and will definitively indicate to the system
what input and output data were associated with a workflow run; a data store extension interface
for transparently supporting diverse data storage systems; standard data store implementations for
the Unix and Windows file systems, and standard relational database systems. Other development
teams will be able to add support for additional data storage systems.

Technology-independent distributed execution. Like data management services, distributed
workflow execution services must be modeled in a technology-transparent way to make workflow
definitions useful in different deployment contexts. Distribution of workflow execution currently
is limited in Kepler to remote execution services modeled as explicit actors, e.g., the Web Service
and Globus actors. Possible Deliverables: A general-purpose framework for distributing actors,
subworkflows, or entire workflows across available processors on multiple nodes; annotation tools
for specifying what parts of workflow to distribute; a distributed execution resource interface for
providing resources to a Kepler installation; a default workflow distribution system based on existing
open-source technologies (e.g., Globus or Condor [14]). Other groups will be able to add support for
other distributed computing technologies.

Generic authentication services Workflows that employ shared or remote services and re-
sources require support for authenticating and authorizing users. Kepler currently has minimal
support for authentication; existing workflows model authentication steps as explicit actors in the
workflow and are thus tightly coupled to the particular authentication schemes employed in the local
organization and/or the organizations providing the remote services. Possible Deliverables: Inte-
grated support for managing authentication and authorization information in workflows; extension
interface for adding support for new authentication and authorization services.

2.4 Transitioning to a new collaborative engineering approach

The majority of code currently being developed for the Kepler system is stored in a single source
code repository module hosted through NCEAS, including hundreds of actors developed by the
numerous contributing projects. Thus, most code developed for use with Kepler is also part of
the Kepler distribution. All of this code is built and tested nightly as a monolithic unit. This
approach has advantages: all developers and contributing projects benefit from a single, centrally
maintained installation of collaborative development infrastructure including unified source code
control, bug tracking, and communication tools; it is easy for all contributors to monitor the activ-
ities and contributions of other developers and projects and to make use of capabilities developed
by everyone; and conflicts between changes, extensions, and dependencies introduced by different
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groups become apparent and can be resolved quickly. However, there are disadvantages: because
all Kepler developers have equal access to all source code, anyone can introduce changes that affect
everyone negatively; the lack of clear boundaries between different projects in the code mean that it
is difficult to deliver a system that is useful to any set of users without delivering the entire system
(including all actors); and it is unclear who should be responsible for what parts of the software,
particularly the overall design of the system.

We plan to introduce a new engineering strategy that will preserve the advantages of the cur-
rent, unconstrained approach, while eliminating its disadvantages. First, we will analyze the existing
code and partition it, in cooperation with other Kepler development teams, into distinct repository
modules representing common functionality required by all projects (the initial versions of the Ke-
pler kernel, standard extensions, and standard actor packages), and code associated primarily with
particular scientific domains, contributing projects, and technologies. We will continue to host code
developed by other groups for use with Kepler and ensure that all such software continues to be
developed in public and to the benefit of the entire scientific community. However, we will also
restrict write access to particular repository modules to the development teams that take respon-
sibility for them. Write privileges to the Kepler kernel, standard extensions, and standard actor
packages will be restricted to the Kepler/CORE development team that will include developers
funded by Kepler/CORE as well as additional developers contributing to this effort. We will en-
courage new and existing projects using Kepler to take advantage of our engineering infrastructure
by creating new repository modules as needed, granting access to our bug tracking system, and
performing continuous builds of each such module automatically, either against the current kernel
and standard packages, or against a particular release of the Kepler/CORE packages.

A key milestone will be the first successful build of the Kepler system following this project
reorganization effort. Continous and nightly builds and tests are currently carried using ant, JUnit,
and CruiseControl. We will migrate these build and testing tasks to the NMI build and test system,
and once the first set of builds and tests succeed we will begin to develop new system tests as needed
to confirm that future refactoring does not break existing functionality. NMI builds and tests will
cover all supported platforms (OS X, Windows, and Linux) and span resources hosted by the three
participating Kepler/CORE institutions (UCD, UCSB, and UCSD).

2.5 Project Coordination and Management

The Kepler/CORE team. The general organization of the Kepler/CORE team is shown in Fig-
ure 3. Project PIs and co-PIs comprise the Kepler/CORE management group. The Kepler/CORE
development group includes four software engineers including a CORE system architect and three
feature engineers. The system architect will articulate the overall vision of the Kepler/CORE
system and its architecture. Responsibilities will include gathering, documenting, and managing
requirements; leading development of the overall architecture and design; and ensuring system ar-
chitecture and design consistency. The software architect also will be responsible for overall project
management tasks, facilitating communication between CORE software developers and managers
(Kepler/CORE project PIs and co-PIs), setting and updating development schedules, assigning de-
velopment tasks, and leading developer meetings. The CORE Feature Engineers will be dedicated
to designing and developing new features and extensions and refactoring existing code. The Ke-
pler/CORE team will meet three times a year to review project progress, discuss overall system
architecture and related issues, perform required design work, and identify tasks for the following
four months.
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Figure 3: The Kepler/CORE Team and interactions with the greater Kepler Collaboration and
Kepler end users

Kepler Stakeholders Council meetings. All software developed under this proposal will be
guided by an ongoing analysis of the needs of current Kepler stakeholders and representatives from
the broader scientific community. We will hold annual Kepler Stakeholder meetings to collect
requirements and feedback from authoritative representatives of existing projects using Kepler.
These meetings will serve as a forum for discussing Kepler/CORE progress with the community
and enabling the users of Kepler to guide future development. Each one-day stakeholders council
meeting will be co-located with a Kepler developer meeting and will be open to PIs and managers for
projects dependent on the success of Kepler/CORE. The meetings will be convened and facilitated
by the Stakeholders Council chair. The chair also will be responsible for investigating options
for sustaining the Kepler/CORE effort beyond the funding period of this grant and will use the
Stakeholders Council as a forum for reporting and gathering feedback on this effort (described
futher in the next section). We will provide travel support for ten participants (in addition to the
Kepler/CORE project members) for each council meeting.

3 Sustaining Kepler in the Long Term

One measure of overall success for the Kepler/CORE project will be the extent to which commu-
nity adoption of Kepler increases. Increased adoption will indicate that the overall Kepler effort is
bringing the benefits of scientific workflow automation to a greater number of scientists and their
respective communities. We believe that delivering the Kepler/CORE system attributes and tech-
nical capabilities outlined above, particularly those that will lead to Kepler becoming a dependable
platform that can be easily extended by a wide range of research communities, is critical to achieving
broad adoption.

The expectation of widespread adoption carries with it the responsibility to provide for the
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long-term sustainability of Kepler beyond the funding period of this project. At a minimum, the
Kepler/CORE software must be maintained, and ideally there would continue to be a central effort to
further develop the Kepler/CORE system. The issue of long-term sustainability must be addressed
both organizationally and financially. We expect that the Kepler project organization proposed here
will not only benefit the current Kepler/CORE effort, but will be a model for sustainability of the
Kepler collaboration in the long term, ensuring that community needs will continue to be prioritized
and met. If successful, the approach of engaging a council of Kepler stakeholders tasked with clearly
articulating the requirements of their respective projects and providing feedback on Kepler/CORE
project progress could be maintained in the long-term. Similarly, continuing to provide development
infrastructure (distinct source code repository modules, automated builds and tests, and centrally
managed groupware) for all groups desiring to extend Kepler would help maintain communication
and synergy between different groups while avoiding conflicts between disparate requirements.

While the above approach likely could be sustained as a community effort, it would greatly
benefit from additional resources for supporting new feature development and continued commu-
nity outreach efforts. Among other options, we plan to investigate forming a 501(c)(3) tax-exempt
corporation qualified to accept funding from a variety of sources to continue Kepler/CORE devel-
opment; provide support for further community outreach, training, and project steering meetings;
and generally sustain the virtual collaboration outlined in this proposal. The Kepler/CORE Stake-
holder’s Council, serving as representatives of the greater Kepler Collaboration, will be responsible
for guiding and approving steps taken in this direction. The chair of the Stakeholder’s Council will
lead this effort, investigating possible business models including those employed by similar non-
profit organizations; approaching an array of non-government organizations, public agencies, and
other funding sources and obtaining their input on viability of these different models; assessing the
applicability of these various approaches to sustaining Kepler; and presenting these options to the
Stakeholders Council for discussion and approval.
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